Resolvent Flows for Convex Functionals and p-Harmonic Maps
نویسندگان
چکیده
منابع مشابه
Attractors for gradient flows of non convex functionals and applications
This paper addresses the long-time behaviour of gradient flows of non convex functionals in Hilbert spaces. Exploiting the notion of generalized semiflows by J. M. Ball, we provide some sufficient conditions for the existence of a global attractor. The abstract results are applied to various classes of non convex evolution problems. In particular, we discuss the longtime behaviour of solutions ...
متن کاملConvex Hull Properties of Harmonic Maps
In 1975, Yau [Y] proved, by way of a gradient estimate, that a complete manifold M with non-negative Ricci curvature must satisfy the strong Liouville property for harmonic functions. The strong Liouville property (Liouville property) asserts that any positive (bounded) harmonic function defined on M must be identically constant. In 1980, Cheng [C] generalized the gradient estimate to harmonic ...
متن کاملSuperrigidity, Generalized Harmonic Maps and Uniformly Convex Spaces
We prove several superrigidity results for isometric actions on Busemann non-positively curved uniformly convex metric spaces. In particular we generalize some recent theorems of N. Monod on uniform and certain non-uniform irreducible lattices in products of locally compact groups, and we give a proof of an unpublished result on commensurability superrigidity due to G.A. Margulis. The proofs re...
متن کاملGradient Flows on Nonpositively Curved Metric Spaces and Harmonic Maps
The notion of gradient flows is generalized to a metric space setting without any linear structure. The metric spaces considered are a generalization of Hilbert spaces, and the properties of such metric spaces are used to set up a finite-difference scheme of variational form. The proof of the Crandall–Liggett generation theorem is adapted to show convergence. The resulting flow generates a stro...
متن کاملOptimal convex combinations bounds of centrodial and harmonic means for logarithmic and identric means
We find the greatest values $alpha_{1} $ and $alpha_{2} $, and the least values $beta_{1} $ and $beta_{2} $ such that the inequalities $alpha_{1} C(a,b)+(1-alpha_{1} )H(a,b)
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Analysis and Geometry in Metric Spaces
سال: 2015
ISSN: 2299-3274
DOI: 10.1515/agms-2015-0004